ミュオン利用研究の基礎

小池 洋二 東北大学大学院工学研究科応用物理学専攻

1. はじめに

ミュオンは、陽子の 1/9、電子の 200 倍の質量 を持ち、正または負の電荷を持つ素粒子である。 静止寿命は 2.2µsec と非常に短いが、スピン(粒 子の自転による角運動量とみなしてよい)1/2 を 持つフェルミ粒子であり、陽子の 3.2 倍の大きさ の磁気モーメントを持っている。そのため、物質 内部の磁場の測定に威力を発揮し、今や磁性の研 究に不可欠な粒子となっている。また、火山の内 部構造の研究や歴史的に貴重な資料の元素分析 等、様々な研究に利用されている。

ミュオンは、宇宙から降ってくる宇宙線に含ま れているが、実験室で利用するミュオンは、大型 の粒子加速器を使って生成されている。加速器で 加速した高エネルギーの陽子を原子核の標的に あてると、多数の 中間子(静止寿命26nsec、湯 川秀樹がその存在を予言してノーベル物理学賞 を受賞した素粒子)ができ、それがミュオンとニ ュートリノに崩壊して得られる。

本稿では、ミュオンによって物質の磁性の研究 ができる原理をやさしく紹介し、さらに、ミュオ ンを利用した磁性以外の研究についても簡単に 触れる。

2. µSR 法の原理

加速器で生成された *中間子が生成標的中で 静止してから崩壊する際に放出される正の電荷 を持ったミュオンµ*のスピンの向きは、進行方 向に対して逆向きである。そのため、µ*の進行 方向をそろえたミュオンビームのスピンは、100% ビームに平行で、進行方向の逆を向いている。こ のスピンの向きが 100%そろっていることが、素 粒子の中でもミュオンがとりわけ磁性研究に適 している理由である。

図1:ミュオンスピン sの磁場 H 下における ラーモアの歳差運動。

物質に入射されたµ⁺は、軽い陽子として振る 舞い、物質中を拡散したり、物質中の負イオンの 近くに停まったり、また、電子と結合して水素原 子に似た中性のミュオニウムを形成することも ある。

物質中に停まった μ^+ は、スピンによる角運動 量 $\hbar s$ に基づく磁気モーメント $\mathbf{m} = \gamma_{\mu}\hbar s$ (ここで、 γ_{μ} は μ^+ の回転磁気比 $2\pi \times 13.55$ kHz/G)を持ってい るので、磁場 H の中ではトルクを受け、 \hbar ds/dt = $\mathbf{m} \times \mathbf{H}$ の運動方程式にしたがってsと \mathbf{m} が時間変 化する。その結果、図1に示すように、sと \mathbf{m} は、 重力下で回転する独楽の首振り運動のように、磁 場の方向を軸として一定の角速度 $\omega = \gamma_{\mu}$ H で首振 り運動をする。この運動はラーモアの歳差運動と 呼ばれ、首振り運動の周期 $2\pi/\omega$ は磁場に反比例 する。したがって、この周期を測定すれば、 μ^+ が停まっている場所の内部磁場の大きさを知る ことができる。

μ⁺の寿命は短く、陽電子と2つのニュートリ ノに崩壊する。このときに、陽電子はμ⁺のスピ ンが向いている方向に放出される確率が最も高 い。この陽電子をカウンターで検出することによ って、μ⁺の崩壊した瞬間におけるスピンの向き が分かる。μ⁺が物質中に停まってから崩壊する までの時間はμ⁺によって様々であるから、各μ⁺ の物質中に停まった時間を原点とした崩壊まで の時間と崩壊時のスピンの向きが分かれば、μ⁺ スピンの時間変化の様子が分かる。このように、 μ⁺スピンの向きの時間変化を測定することによ ってμ⁺の停まった場所の内部磁場を調べる方法 をミュオンスピン回転・緩和・共鳴法(μSR法) という。

実際には、図2のように、ミュオンビームを入 射する試料の前後に、リング状に並べた陽電子の カウンターを対称的に配置し、陽電子をカウント する。前方と後方の陽電子カウンターにおける時 刻tでのカウント数をそれぞれF(t)とB(t)とすると、 $F(t) = N_0 \exp(-t/\tau)(1 + A_0 G_Z(t)) ,$ B(t)N₀exp(-t/τ)(1-A₀G_Z(t))となる。ここで、N₀ は定数、 τ はミュオンの寿命 2.2 μ sec、A₀はカウンターと試 料の配置関係と崩壊陽電子の放出方向の異方性 による定数、G_Z(t)は時刻 t におけるミュオンスピ ンの偏極度であり、G_Z(0)=1である。そして、A(t) = {F(t)-B(t)}/{F(t)+B(t)}と定義される非対称度A(t) を計算してやると、 $A(t) = A_0G_Z(t)$ となり、ミュオ ンスピンの偏極度の時間変化を求めることがで きる。

図3に、µSRの時間スペクトルG_Z(t)を具体的に 示す。ミュオンが物質内部の磁場を感じない場合 は、図3(a)のように、ミュオンスピンの偏極は緩 和しない。ミュオンが一様な内部磁場を感じると、 図3(b)のように、ミュオンスピンの歳差運動に対 応した振動するスペクトルが得られる。また、内 部磁場に不均一があると、各ミュオンの歳差運動 の周期が異なってくるため、図3(c)のように、振 動は減衰する。

3. 磁性体における µSR

ここで、物質の磁性について簡単に述べる。磁 石はS極からN極に向かうマクロな磁気モーメ ント(大きな磁化)を持っているが、その起源は、 電子の軌道運動と電子のスピンによるミクロな 磁気モーメントである。磁石では、この電子の磁 気モーメントが同じ向きにそろった状態(強磁性 状態)が実現し、大きな磁化を示す。物質によっ ては、隣り合う電子の磁気モーメントが互いに反 対向きに整列した状態 (反強磁性状態)や、電子 の磁気モーメントの向きがらせん状に配列した 状態(らせん磁性状態)が実現している。また、 高温になると、どんな物質でも、電子の磁気モー メントの向きはばらばらな状態(常磁性状態)に 変化し、時間的にも激しく変化する。このように、 物質によっても、温度によっても、電子の磁気モ ーメントの配列の仕方や振る舞いは変わるが、そ れによって、物質内部の磁場の様子も変わってく る。それゆえ、物質内部の磁場を調べられる uSR 法が、物質の磁性の研究に大変有効なのである [1,2]。以下で、磁性体の様々な状態における µSR の時間スペクトルを紹介する。

3.1 常磁性状態における µSR

常磁性状態では、電子の磁気モーメントの向き は非常に速くゆらいでいるので、この磁気モーメ ントがミュオンの停まった場所に作る双極子磁 場は、時間平均をとるとゼロになる。したがって、 ミュオンは電子の磁気モーメントの動きを感知 できない。

そこでミュオンが感知するのは、原子核スピン による内部磁場である。原子核も原子核固有のス ピン(核スピン)を持っている(なかには核スピ ンを持っていない原子核もある)。しかし、核ス ピンによる磁気モーメントの大きさは電子スピ ンによる磁気モーメントに比べて3桁小さい。そ れは、核を構成している陽子の質量が電子の質量 より 1800 倍大きいことに因っている。したがっ て、核スピンによる磁気モーメントが秩序を持っ

図3:典型的な μSR 時間スペクトル。

(a)内部磁場がゼロの場合。

(b)内部磁場が一様な場合。

(c)静的な内部磁場に不均一がある場合。

(d)静的な内部磁場がランダムで、ガウス分布している場合。

(f)

(e)内部磁場が空間的・時間的にゆらいでいる場合。

(f)内部磁場が一様で、入射ミュオンビームに垂直の場合。

(g)静的な内部磁場が著しく不均一な場合。

て整列する温度は 0.1µK 以下の超低温である。通 常の温度では、電子の常磁性状態のように、磁気 モーメントの向きはばらばらで、非常にゆっくり とゆらいでいる。このとき、2.2µsec と短い寿命 のミュオンは、この核スピンによる磁気モーメン トが作る双極子磁場を数 G 程度のランダムな静 的磁場と感じるのである。

ミュオンが停まっている各場所における磁場 のランダムさはガウス分布で表現され、時間スペ クトルは、図3(d)に示すような久保-鳥谷部関数 $G_Z(t) = 1/3 + (2/3)(1 - \Delta^2 t^2) \exp(-\Delta^2 t^2/2)$ で表現できる。 ここで、 Δ は磁場分布の半値幅と γ_μ の積である。 t = 0 付近ではガウス型で減少し、 $t = \sqrt{3}/\Delta$ で極小 を示し、 $t = \infty$ で 1/3 に漸近する。この 1/3 の尾に ついては、次のように理解できる。すなわち、ミ ュオンが感じる磁場の向きがランダムな場合、磁 場の 1/3 は x 方向、 1/3 は y 方向、 1/3 は z 方向を 向いていると近似すると、入射されたミュオンの 1/3 は歳差運動をすることなく(スピンの向きを 変えないで) $G_Z(t) = 1$ の状態を保ち、残りの 2/3 は $G_Z(t) = 0$ を中心とした減衰振動スペクトルを示 すからである。

3.2 磁気秩序状態における µSR

常磁性状態では非常に速くゆらいでいた電子 の磁気モーメントは、低温になるとゆらぎが遅く なり、ミュオンは、電子の磁気モーメントが作る 双極子磁場(核スピンによる磁気モーメントが作 る双極子磁場に比べて約3桁大きい)を感じるよ うになる。ミュオンが感じるこの磁場はミュオン が停まった場所によって異なり、しかも、時間変 化するので、100%偏極していたミュオンスピンの 向きは、時間とともにばらばらになり、図3(e) のような指数関数的な時間スペクトルが得られ る。核スピンによる静的な磁場を感じていた場合 に現れた 1/3 の尾は、この場合は現れない。とい うのは、入射方向と同じ方向の内部磁場を感じて いたミュオンスピンも、その内部磁場が時間変化 するために緩和してしまうからである。

さらに低温になって、電子の磁気モーメントが 整列し、静的な磁気秩序が形成されると、ミュオ

ンは電子の磁気モーメントによる静的な双極子 磁場を感じる。ミュオンの停まる位置と磁気構造 との関係がすべてのミュオンで同じであれば、図 3(b)のような振動する時間スペクトルが得られ る。そして、ミュオンの感じる内部磁場の方向が 入射ミュオンビームの方向と垂直の場合、図3(f) のように、振動の振幅は最も大きく、平行の場合、 図3(a)のように、振幅はゼロになる。後者の場合 は、ミュオンスピンの歳差運動が起こらないから である。また、多結晶試料を用いて測定した場合 には、試料内の1/3の領域の磁場は入射ミュオン ビームの方向と平行であると考えられるので、 G_Z(t) = 1/3 を中心に振動する。そして、ミュオン の停まる位置が磁気構造の中で複数存在する場 合や試料の質がよくない場合には、図3(c)のよう に、振動は減衰する。また、内部磁場が静的で全 くランダムなスピングラス状態では、図3(g)のよ うに、振動は観測されなくて、1/3の尾が明確に 現れる。これは、図3(c)や(d)の横軸が極端に圧縮 された時間スペクトルと見ることができる。

ここまでは、試料に外部磁場を印加しない状態 における時間スペクトルを紹介してきたが、試料 にミュオンが感じる内部磁場よりも 10 倍くらい 大きな縦磁場(入射ミュオンビームに平行な磁 場)を印加すると、図3(a)のような時間スペクト ルが得られる。縦磁場を印加して行う測定を LF-µSR というが、このような時間スペクトルが 得られる縦磁場の大きさによって、ミュオンが感 じている内部磁場の大きさを見積もることがで きる。

4. 第2種超伝導体の混合状態における μSR

試料にミュオンが感じる内部磁場よりもはる かに大きな横磁場(入射ミュオンビームに垂直な 磁場)を印加すると、図3(f)のような時間スペク トルが得られる。横磁場を印加して行う測定を TF-μSR という。この TF-μSR による研究を以下で 紹介する。

第2種超伝導体に下部臨界磁場 H_{c1} 以上、上部

臨界磁場 H_{c2} 以下の磁場を印加すると、混合状態 になり、磁束線(vortex)が試料内に導入される。

そのため、試料内の磁場分布が一様でなくなる。 したがって、第2種超伝導体において、超伝導転 移温度 T。よりも高温のノーマル状態で TF-µSR を 行うと、図3(f)のような時間スペクトルが得られ るが、T。以下の超伝導の混合状態で TF-µSR を行 うと、振動は減衰していく。この減衰の程度は、 試料内の磁場分布の不均一さによるもので、そこ から、超伝導状態における磁場侵入長、さらには、 超伝導電子密度を見積もることができる。

5. 金属における µSR

局在スピンを持たない通常の金属において TF-μSR を行うと、伝導電子のスピンが横磁場の 方向に少し偏極する。それによってミュオンが感 じる磁場が増大し、ミュオンの歳差運動の周期が 変化する。核磁気共鳴(NMR)で観測されるナイ トシフトと同じ現象であり、これにより、伝導電 子のフェルミ面における状態密度の情報を得る ことができる。

6. 磁性研究における他の手段との比 較

磁性研究のための代表的な実験手段として、中 性子散乱と NMR があるが、µSR はこれらの手段 と相補的な関係にある。磁気的な長距離秩序の詳 細な構造解析において、中性子散乱の右に出るも のはない。また、サイト選択的な内部磁場の解析 において、NMR の右に出るものはない。μSR の 特徴は、長距離の磁気秩序であれ、短距離の磁気 秩序であれ、磁性の変化に敏感に反応することで ある。したがって、新しく開発された物質の磁性 の有無を調べるときには、大変有効である。また、 ミュオンビームのスピンは 100%偏極しているの で、外部磁場を印加しなくても、ゼロ磁場で磁性 の情報が得られるのも大きな特徴である。一方、 NMR では、核スピンを外部磁場によって偏極さ せて、それからの変化を見るので、外部磁場の印 加が必要である。しかも、µSR では、単結晶試料

からも多結晶試料からも磁性の情報を得ること ができ、NMR のように信号の検出に特別に苦労 することもない。また、磁性を調べる時間窓が、 中性子散乱では 10^{-9} sec より短く、NMR では 10^{-5} sec より長い。 μ SR の時間窓はそのちょうど谷 間の 10^{-11} - 10^{-5} sec にあり、このような時間領域に おけるスピンのダイナミクスを知ることができ るのは、 μ SR をおいて他にはない。

7. ミュオンのその他の利用

ミュオンは磁性の研究以外にも様々な研究に 利用されているが、ここでは、紙面の都合で2つ だけ紹介する。

7.1 宇宙線ミュオンを用いた火山の内部構 造の研究

ラジオグラフィーといえば、X線を用いて人体 の写真を撮るレントゲン写真が身近にあるが、宇 宙線に含まれている高エネルギーのミュオンを 用いたラジオグラフィーが火山の内部構造の研 究に役立っている[3]。ミュオンは他の粒子に比べ て透過率が極めて高く、手のひらサイズに毎秒1 個くらいのミュオンが宇宙から降ってきている。 しかも、ミュオンは直線性に優れているので、ラ ジオグラフィーに適している。

宇宙から飛来したミュオンは、物質中の電子や 原子核と相互作用するので、そのエネルギーの損 失は物質の密度と経路長に依っている。したがっ て、火山を透過してきたミュオンの強度を測定し、 地形図からミュオンの経路長を読み取れば、ミュ オンが飛来してきた経路上の平均密度が分かる。 それゆえ、火山の片側にミュオンの飛来方向も同 定できるカウンターを配置して測定すれば、火山 内部の密度分布を高い空間分解能で知ることが できる。

図4に、実際に薩摩硫黄島火山で得られた宇宙 線ミュオンによるラジオグラフィー像を示す[3]。 低密度の部分が火山ガスの泡を大量に含んだマ グマであり、マグマが浅い場所で大量の火山ガス を放出していることが分かる。 このようなミュオンラジオグラフィーは、火山 の内部構造の研究だけでなく、溶鉱炉や大型建造 物の内部の探索にも利用されている。

図4:薩摩硫黄島火山の写真と宇宙線ミュオ ンラジオグラフィー像[3]。

7.2 負ミュオンを用いた特性X線による元 素分析

負の電荷を持ったミュオン µ は、物質中に入 ると重い電子として振る舞い、原子核に捕獲され る。電子よりも 200 倍重いために、電子よりもず っと原子核の近くに束縛されるので、物質中では 原子番号がひとつ小さい不純物と見ることもで きる。原子核に捕獲されたµ は、エネルギーの 高い励起状態から基底状態へと遷移するときに 原子核に特有の特性X線を放出する。それゆえ、 この特性X線を調べることによって物質の構成 元素を同定することができる。この方法を使えば、 試料を破壊することなく構成元素の分析できる ため、貴重な試料の元素分析に有効である。実際、 天保小判や中国秦時代の青銅貨の元素分析がµ を使って行われている[4]。また、µの運動エネ ルギーを変化させることによって、μ が停まる 試料表面からの深さを制御することができるの で、構成元素の試料表面からの深さ依存性を調べ ることも可能である。

8. おわりに

本稿ではミュオンを利用した研究の典型的な 例をいくつか紹介してきたが、幸い、日本では、 茨城県の東海村に高エネルギー加速器研究機構 (KEK)と日本原子力研究開発機構(JAEA)の 共同で、大強度陽子加速器研究施設(J-PARC)が 建設され、その中に設けられたミュオン科学実験 施設(MUSE)では、世界最高強度のミュオンビ ームが発生され、ミュオンを用いた先端研究が始 まっている。したがって、ミュオンを用いた研究 は今後益々発展していくと思われるので、若い人 たちの積極的な参加を期待している。

また、本稿ではミュオン利用研究の基礎中の基礎を紹介したが、より詳しく知りたい方は、下記の文献[5-8]を参照していただきたい。

最後に、本稿の作成にあたり筆者の理解を助け ていただいた KEK の小嶋健児氏と理化学研究所 の渡邊功雄氏に感謝したい。

参考文献

- [1] 小池洋二, µSR から見た高温超伝導とストラ イプ, 中間子科学連絡会会報「めそん」, No. 23 (2006) pp. 14-19.
- [2] 小池洋二, 酸化物高温超伝導体の μSR, 原子 核研究, **52** Supplement 2 (2007) pp. 22-33.
- [3] 田中宏幸, ミュー粒子を用いた火山内部のイ メージング, 日本物理学会誌, 65 (2010) pp. 70-79.
- [4] M. K. Kubo, H. Moriyama, Y. Tsuruoka, S. Sakamoto, E. Koseto, T. Saito, K. Nishiyama, J. Radioanal. Nucl. Chem. 278 (2008) 777.
- [5] 永嶺謙忠,「ミュオンの科学 21 世紀をになう 粒子 」(FRONTIER SCIENCE SERIES, 丸善, 1988).
- [6] 西山樟生, μSR 実験法, 固体物理, **26** (1991) pp. 693-704.
- [7] 小林俊一編,「物性測定の進歩 I NMR, μSR, STM 」(シリーズ 物性物理の新展開, 丸善, 1997) pp. 91-203, 2章 μSR (西田信彦).
- [8] K. Nagamine, "Introductory Muon Science" (Cambridge University Press, Cambridge, 2003).