High-speed holographic microscopy

Dr. Laurence Wilson
(Department of Physics, University of York, UK)

Abstract:
Microscopic swimming organisms often move in three dimensions, but camera sensors are two-dimensional. We use ideas from classical optics and signal processing to design new image processing algorithms, to extract more information from digital images. I will present several examples from recent work in holographic imaging of microswimmers (including eukaryotic flagella, archaeal cells and bacteria cells) that use custom image-processing algorithms to obtain 3D data on microorganism swimming trajectory and shape. The ability to follow hundreds or thousands of individual swimming bacteria in volumes of up to 1mm^3 allows us to address questions on the statistics and variability of cells’ swimming trajectories.

Above: Swimming paths of *E. coli* bacteria, coloured to indicate different cells. Durations range from around 10-30 seconds, and the squares on the ground represent a distance of 50 μm.